研究業績

◎学術雑誌など掲載論文

  1. Nanoparticle-Based Tough Polymers with Crack-Propagation Resistance, Yuma Sasaki, Yuichiro Nishizawa, Takumi Watanabe, Takuma Kureha, Kazuya Uenishi, Kazuko Nakazono , Toshikazu Takata*, Daisuke Suzuki* Langmuir 2023, XXXX, XXXXX
  2. Efficient transformation of polymer main chain catalyzed by macrocycle metal complexes via pseudorotaxane intermediate, T. Takata, Y. Yamamoto, K. Higuchi, M. Ogawa, A. Kawasaki, S. Mizuno, H. Iwasaki, M. Nagashima, Y. Hayashi, S. Kawauchi, Nakazono, Y. Koyama, Angew. Chem. Int. Ed. 2023, 62, e202303494.
  3. Synthesis of a cyclic poly(methyl acrylate) via topological transformation of a [1]rotaxane, Nakazono, T. Ogawa, T. Takata, Mater. Chem. Front. 2019, 3, 2716 – 2720.
  4. Supramolecular network derived by rotaxane tethering three ureido pyrimidinone groups, S.–J. Rao, Nakazono, X. Liang, K. Nakajima, T. Takata, Chem. Commun. 2019, 55, 5231 – 5234.
  5. Sulfur-33 NQR investigation of the electric-field gradient tensor in an organosulfur compound, K. Yamada, D. Aoki, Nakazono, T. Takata, Z. Naturforsch. 2019, 74, 421 – 425.
  6. 33S nuclear quadrupole resonance study of dibenzyl disulfide toward understanding of cross-linked structures in rubber, K. Yamada, Nakazono, T. Yoshie, M. Fukuchi, T. Kitaura, T. Takata, J. Phys. Chem. Part A, 2019, 110 – 119.
  7. Direct observation of the morphology and peeling behavior of poly(vinyl alcohol) derivatives in water by scanning probe microscopy, T. Isobe, K. Kobayashi, Nakazono, S. Matsushita, A. Nakajima J. Am. Ceram. Soc., 2018, 126, 839 – 842.
  8. Induction of single-handed helicity of polyacetylenes using mechanically chiral rotaxanes as chiral sources, F. Ishiwari, Nakazono, Y. Koyama, T. Takata, Angew. Chem. Int. Ed. 2017, 56, 14858 – 14862.
  9. A vinylic rotaxane cross-linker for toughened network polymers from the radical polymerization of vinyl monomers, J. Sawada, D. Aoki, M. Kuzume, Nakazono, H. Otsuka, T. Takata, Polym. Chem. 2017, 8, 1878 – 1881.
  10. Diastereoselective synthesis of optically active rotaxane amine N-oxides via through-space chirality transfer, K. Xu, Nakazono, T. Takata, Tetrahedron Lett. 2016, 57, 4356 – 4359.
  11. Design of rotaxane catalyst for O-acylative asymmetric desymmetrization of meso-1,2-diol utilizing cooperative effect of the components, K. Xu, Nakazono, T. Takata, Chem. Lett. 2016, 45, 1274 – 1276.
  12. Efficient synthesis of cyclic block copolymer by rotaxane protocol via linear-cyclic topology transformation, S. Valentina, T. Ogawa, Nakazono, D. Aoki, T. Takata, Chem. Eur. J. 2016, 22, 8759 – 8762.
  13. Reversible polyphenylacetylene helix conversion driven by a thermoresponsive rotaxane switch in the solid state, N. Zhu, Nakazono, T. Takata, Chem. Commun. 2016, 52, 3647 – 3649.
  14. Solid-state rotaxane switch: synthesis of thermoresponsive rotaxane shuttle utilizing a thermally decomposable acid, N. Zhu, Nakazono, T. Takata, Chem. Lett. 2016, 45, 445 – 447.
  15. Gold-catalyzed enantioselective synthesis, crystal structure, and photophysical/chiroptical properties of aza[10]helicenes, M. Tanaka, Y. Shibata, K. Nakamura, K. Teraoka, H. Uekusa, Nakazono, T. Takata, K. Tanaka, Chem. Eur. J. 2016, 22, 9537 – 9541.
  16. Effective approach to cyclic polymer from linear polymer: synthesis and transformation of macromolecular [1]rotaxane, T. Ogawa, Nakazono, D. Aoki, S. Uchida, T. Takata, ACS Macro Lett. 2015, 4, 343­ – 347.
  17. Synthesis and properties of pendant fluorene moiety-tethering aliphatic polycarbonates, Nakazono, C. Yamashita, T. Ogawa, H. Iguchi, T. Takata, Polym. J. 2015, 47, 355 – 361.
  18. Linear-cyclic polymer structural transformation and its reversible control using a rational rotaxane strategy, T. Ogawa, N. Usuki, Nakazono, T. Takata, Chem. Commun. 2015, 51, 5606 – 5609.
  19. Directed one-pot syntheses of crown ether wheel-containing main chain-type polyrotaxanes with controlled rotaxanation ratios, Nakazono, T. Ishino, T. Takashima, D. Saeki, D. Natsui, N. Kihara, T. Takata, Chem. Commun. 2014, 50, 15341 – 15344.
  20. Effect of a side chain rotaxane structure on the helix-folding of poly(m-phenylene diethynylene), S. Suzuki, K. Matsuura, Nakazono, T. Takata, Polym. J. 2014, 46, 355 – 365.
  21. Stimuli-degradable cross-linked polymers synthesized by radical polymerization using a seize-complementary [3]rotaxane cross-linker, K. Iijima, Y. Kohsaka, Y. Koyama, Nakazono, S. Uchida, S. Asai, T. Takata, Polym. J. 2014, 46, 67 – 72.
  22. Macromolecular [2]rotaxanes: effective synthesis and characterization, D. Aoki, S. Uchida, Nakazono, Y. Koyama, T. Takata, ACS Macro. Lett. 2013, 2, 461 – 465.
  23. Adsorption and adhesion of poly(vinyl alcohol) and poly(ammonium acrylate) as organic additives for wet mold processing of Al2O3, T. Isobe, M. Nakanome, Nakazono, S. Matsuhita, A. Nakajima, Ceramics International, 2013, 39, 3857-3864.
  24. Thermoresponsive shuttling of rotaxane containing trichloroacetate ion, Y. Abe, H. Okamura, Nakazono, Y. Koyama, S. Uchida, T. Takata, Org. Lett. 2012, 14, 4122 – 4125.
  25. Reversible helix–random coil transition of poly(m-phenylenediethynylene) by a rotaxane switch, S. Suzuki, F. Ishiwari, Nakazono, T. Takata, Chem. Commun. 2012, 48, 6478 – 6480.
  26. Polymer architectures assisted by dynamic covalent bonds: synthesis and properties of boronate-functionalized polyrotaxane and graft-polyrotaxane, Y. Koyama, Y. Suzuki, T. Asakawa, N. Kihara, Nakazono, T. Takata, Polym. J. 2012 44, 30 – 37.
  27. Rational control of polyacetylene helix by pendant rotaxane switch, Ishiwari. K. Nakazono, Y. Koyama, T. Takata, Chem. Commun. 2011, 47, 11739 – 11741.
  28. A rational design for directed helicity change of polyacetylene using dynamic rotaxane mobility via through-space chirality transfer, F. Ishiwari, K. Fukasawa, T. Sato, Nakazono, Y. Koyama, T. Takata, Chem. Eur. J. 2011, 41, 3793 – 3800.
  29. Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network, Y. Kohsaka, Nakazono, Y. Koyama, S. Asai, T. Takata, Angew. Chem. Int. Ed. 2011, 50, 4872 – 4875.
  30. Neutralization of sec-ammonium group unusually stabilized by the “rotaxane effect”: Synthesis, structure, and dynamic nature of a “free” sec-amine/crown ether-type rotaxane, Nakazono, T. Takata, Chem. Eur. J. 2010, 16, 13783 – 13794.
  31. Selective transformation of a crown ether/sec-ammonium salt-type rotaxane to N-alkylated rotaxanes, S. Suzuki, Nakazono, T. Takata, Org. Lett. 2010, 12, 712 – 715.
  32. High-yield one-pot synthesis of permethylated a-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction, Nakazono, T. Takashima, T. Arai, Y. Koyama, T. Takata, Macromolecules, 2010, 43, 691 – 696.
  33. Synthesis of acetylene-functionalized [2]rotaxane monomers directed toward side chain-type polyrotaxanes, Nakazono, K. Fukasawa, T. Sato, Y. Koyama, T. Takata, Polym. J. 2010, 42, 208 – 215.
  34. Thiazolium-tethering rotaxane-catalyzed asymmetric benzoin condensation: Unique asymmetric field constructed by the cooperation of rotaxane components, Y. Tachibana, N. Kihara, Nakazono, T. Takata, Phosphorus, Sulfur, and Silicon and the Related Elements, 2010, 185, 1182 – 1205.
  35. Crown ether-tert-ammonium salt complex fixed as rotaxane and its derivation to nonionic rotaxane, Nakazono, S. Kuwata, T. Takata, Tetrahedron Lett. 2008, 49, 2397 – 2401.
  36. Synthesis of rotaxanes consisting of crown ether wheel and sec-ammonium axle under basic condition, Nakazono, T. Oku, T. Takata, Tetrahedron Lett. 2007, 48, 3409 – 3411.
  37. Synthesis of [2]rotaxanes by the catalytic reactions of a macrocyclic copper complex, S. Saito, E. Takahashi, Nakazono, Org. Lett. 2006, 8, 5133 – 5136.
  38. Template synthesis of [2]rotaxanes with large ring components and tris(biphenyl)methyl group as the blocking group. The relationship between the ring size and the stability of the rotaxanes, S. Saito, Nakazono, E. Takahashi, J. Org. Chem. 2006, 71, 7477 – 7480.

◎総説・解説

  1. 高分子の環状と鎖状の可逆的トポロジー変換,中薗和子,高分子,202170,655-656. (解説記事)
  2. インターロック分子と分子間力,中薗和子,化学と教育,2021, 69, 386-389. (解説記事)
  3. Mechanical chirality of rotaxanes: synthesis and function, Nakazono, T. Takata, Symmetry, 2020, 12, 144-159.
  4. 鎖状-環状高分子トポロジー変換-グラムスケール合成から広がるトポロジーの世界, 中薗 和子, 高田 十志和, 化学, 2018, 73, 66–67.(解説記事)
  5. キラルインターロック分子の合成と機能,中薗 和子,高田 十志和,有機合成化学協会誌,2017, 75, 491-502.
  6. 新しい架橋剤:空間連結型架橋剤の合成とビニル重合系への展開, 打田聖, 澤田隼, 飯島 圭祐・青木 大輔・中薗 和子・高田 十志和, 高分子論文集,2015, 72, 93-103.
  7. 高分子ロタキサン,中薗 和子,化学と工業,2015, 68, 258-259. (解説記事)
  8. 機能性マクロサイクルに新星!?シアノスターとロタキサン合成,中薗 和子,化学,2013, 68, 62–63. (解説記事)
  9. 9,9-Diarylfluorene moiety incorporated into polymer main chains: an essential skeleton exhibiting prominent physical, chemical, and optical properties, Y. Koyama, Nakazono, H. Hayashi, T. Takata, Chem. Lett. 2010, 39, 2-9.

◎特許

  1. 特開2010-209053,2価アルコール類、ポリカーボネート樹脂、ポリエステル樹脂、それらからなる成形体、および光学素子,高田 十志和,中薗 和子,高坂 泰弘,細川 勝元,小島 貴博,キヤノン株式会社,国立大学法人東京工業大学(特願2009-060271)
  2. 再表2010-047094,ロタキサン化合物及び抗ガン剤,高田 十志和,小山 靖人,中薗 和子,長谷川 俊秀,Lee Yong-Gi,小野 信文,西尾 和人,藤田 至彦(特願2010-534687)株式会社ワン・ステーション,国立大学法人東京工業大学ほか
  3. 特開2009-067699,ロタキサン、及びその製造方法,高田 十志和,中薗 和子,国立大学法人東京工業大学(特願2007-235598)
フッターロゴ
Copyright © Nakazono Group
トップへ戻るボタン